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ON THE KERNEL FUNCTION OF THE INTEGRAL EQUATION RELATING LIFT AND DOWNWASH
DISTRIBUTIONS OF OSCILLATING WINGS IN SUPERSONIC FLOW *

By CrarLEs E. WarriNs and JoLiaN H. BEramanN

SUMMARY

This report treats the kernel function of the integral equation
that relates a known or preseribed downwash distribution to an
unknown lift distribution for harmonically oscillating wings in
supersonic flow. The treatment i8 essentially an extension to
supersonic flow of the treatment given in NACA Report 123}
for subsonic flow. For the supersonic case the kernel function
18 derived by use of a suitable form of acoustic doublet potential
which employs a cutoff or Heaviside unit function. The kernel
Sfunctions are reduced to forms that can be accurately evaluated
by considering the functions in two parts: a part in which the
singularities are tsolated and analytically expressed, and a
nonsingular part which can be tabulated.

The kernel 1s treated for the two-dimensional case, and 1t i3
shown that the two-dimensional kernel leads to known Ujft
distributions for both steady and oscillating two-dimensional
wings. The kernel function for three-dimensional supersonic
flow is reduced to the sonic case and 18 shown to agree with
results obtained for the sonic case in NACA Report 1234, and
the downwash functions associated with ‘‘horseshoe’ vortices in
supersonic flow are discussed and expressions are derived.

INTRODUCTION

In reference 1 the kernel function of an integral equation
relating & known or prescribed downwash distribution to an
unknown lift distribution for a harmonically oscillating finite
wing of arbitrary plan form was treated for compressible
subsonic flow. The purpose of the present report is to
extend this treatment of the kernel function to supersonic
flow.

The kernel functions under consideration arise when
linearized-boundary-value problems for obtaining aerody-
namic forces on oscillating wings are reduced to integral
equations involving the distribution of pressure or wing
loading as the unknown. In such integral equations the
kernel functions play the important role of aerodynamic
influence functions in that they give the normal induced
velocity or downwash at any one point in the plane of the
wing due to a unit pressure loading at any other point in the
plane of the wing.

As the kernel functions arise in the analysis, they are
mathematically defined by rather intricate improper inte-
grals and possess singularities as high as second order. It is
therefore desirable to isolate the singularities and determine

their explicit nature in order to make the integral equation
more amenable to solution, in particular amenable to solution
by approximate or numerical procedures.

Approximate lifting-surface theories for finite wings, such
as the methods developed by Falkner and Multhopp (refs.
2 and 3) and others, have afforded considerable success in
the calculation of serodynamic coefficients for steady sub-
sonic aerodynamics. Similar approximate methods have been
successfully employed to obtain coefficients for two-dimen-
gional oscillating wings in subsonic (compressible) flow (for
example, refs. 4 and 5) and are now being extended to the
finite oscillating wing in subsonic flow by Harry L. Runyan
and Donald S. Woolston of the Langley Aeronautical Labora-
tory and by W. P. Jones (ref. 6). It is reasonable to expect
that these methods can be further extended to apply to
finite wings in supersonic flow.

In supersonic flow, solutions of the boundary-value prob-
lem for some particular plan forms and downwash conditions
can be obtained in the form of infinite series in terms of a
parameter involving the frequency of oscillation (see, for
example, refs. 7 to 10) or in the form of rather complicated
definite integrals (refs. 11 and 12). The infinite-series
method furnishes a relatively simple means of obtaining the
loading on oscillating wings for low values of the frequency
parameter, but for large values of this parameter the series
expansions converge 80 slowly that recourse must be had
to other procedures for obtaining the wing loading. One
feasible method is to study and develop approximate pro-
cedures for solving the integral equations that involve the
unknown loading and its associated kernel function. The
first step toward such a development is to isolate and deter-
mine the explicit nature of the singularities of the kernel
function; this step is accomplished in the present report.

The report contains the derivation of the kernel function
in the form of an improper integral and a reduction of this
integral to proper form. The singularities of the kernel
function are isolated and expressed analytically, and the
nonsingular parts are reduced to a form readily amenable
to numerical evaluation, as was done in reference 1 for sub-
sonic flow. Some expanded forms of the kernel function
are derived, and one of these is used to obtain a reduction to
two-dimensional flow. In appendix A, the limiting case for
sonic flow is derived and shown to agree with the results in
reference 1. Appendix B is devoted to certain integrals of

1 Suporsedes NAOA Technical Note 3438 by Oharles E, Watkins and Jultan H. Berman, 1955.

147



148

the kernel function. These integrals relate to ‘“horseshoe”
vortices in supersonic flow, as treated, for example, in the
steady case by Schlichting in reference 13, and may be of
interest in certain modes of application.

SYMBOLS

e velocity of sound

Io, Ii() modified Bessel functions of first kind

Jx(z) Bessel function of first kind

Ky, K, modified Bessel functions of second kind

K (2, 40) kernel function for three-dimensional flow

k reduced-frequency parameter, lw/T7

K (2) kernel function for two-dimensional flow

Lk, n), L(¢) lift distributions

Ly, L modified Struve function of first order

l unit length

M Mach number, V/c

P perturbation pressure

r=+y*+ 2

S region of zy-plane occupied by wing

t time

U(z) unit funection

Vv forward velocity of wing

w(z,y,t) downwash velocity, e'*"w(z,y)

w(z,y) complex amplitude function of prescribed ver-
tical velocity

2,Y,2 Cartesian coordinates attached to wing mov-
ing in negative z-direction

To=2—§

Yo=Y—n

B=+M?>*—1

8(x) Dirac delta function

£n Cartesian coordinates used to represent space
location of doublets

p fluid density _

o (z,9,2,0) velocity potential, e***¢(z,y,2)

#(2,9,2) complex amplitude function of velocity po-
tential

Y(z,y,2,L) acceleration potential, ef“y(z,y,2)

v(z,y,2) complex amplitude function of acceleration
potential

@ circular frequency of oscillation

wo=ofVp?

ANALYSIS

INTEGRAL EQUATION RELATING DOWNWASH AND LIFT DISTRIBUTION

The linearized-boundary-value problem for the determina-
tion of the aerodynamic forces on a wing can be immediately
reduced to a problem of solving an integral equation that
relates downwash and lift distribution. The purpose of
this section is to introduce and briefly discuss this equation.

Since the integral equation has the same formal appear-
ance for subsonic and supersonic flow and is derived in various
publications (for example, refs. 1 and 14), the equation will
not be rederived here but will be formally stated so as to
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gerve as a starting point in the analysis. In keeping with
linear theory, the wing is considered as a plane, impenetrable
surface S which lies neagly in the zy-plane as indicated in
sketch (a).

gL
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Sketeh (a)

The z,y,2 coordinate system and the surface S are assumed
to move in the negative z-direction at a uniform velocity V.

In terms of these coordinates, the integral equation may
be formally written as

Bep—g, [[ LeNEG—ty—ndedn )
8

where w(z,y) is the complex amplitude function of prescribed
vertical velocity or downwash at points in S and is defined as
follows:

w(z,y,t)=¢€'"w(z,7)

where @ is the frequency of pulsation or oscillation. The
kernel function K(zo,yo) physically represents the contribu-
tion to the downwash at & point (z,y) in S due to the presence
of a pulsating pressure doublet of unit strength located at
some other point (£,9) in S. It is a function not only of z,
9, £ and n but also of Mach number and frequency. The
function L(%,9) in equation (1) is the unknown lift distribu-
tion or local doublet strength. (Although it is usually
convenient to factor out the density term 1/p as indicated
in eq. (1), this was not done in ref. 1.)

Equation (1) pertains formally to either subsonic or super-
sonic flow; however, separate treatments of the two cases are
required because of wide differences associated with flow
characteristics. So far as the integral equation is concerned,
the differences in the two cases lie mainly in the kernel func-
tions. These differences are associated with the differences
in character of doublets for the two cases. Although the
main purpose of this analysis is to derive and treat the
kernel function for the supersonic case, & necessary first step
is to formulate a doublet suitable for such & treatment. In
the following section, a desired form, which was arrived at
by a convenient use of a cutoff, or Heaviside unit function,
is presented in equation (5).

PULSATING DOUBLET MOVING AT SUPERSONIC SPEED

The governing differential equation for linearized unsteady
flow at either subsonic or supersonic speeds, which the
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doublet potentials must satisfy, is the well-known wave
equation referred to & moving coordinate system:

w 2W*’azf 1(V +bt> ¥=0

Under the assumption that disturbances vary harmonically
with respect to time, this equation becomes

%, %Y l,l/ 1
St 5 a5 (v Stia) T=0 (@)
where ¢ is 2 complex amplitude function defined by

III(I, Y, 3 t)=eiut"7’(z: Y 2) (3)

It may appear that, since the same differential equation (eq.
(2)) is involved, a logical way of obtaining the potential for
a pulsating doublet moving at supersonic speed is by simple
analogy or continuation from the potential for the doublet
moving at subsonic speed. This procedure is applicable only
in a broad sense because, as discussed in reference 15 with
regard to sources in supersonic flow, the potential of a doublet
moving at supersonic speed consists of the sum of two effects
corresponding to a retarded-type potential and an advanced-
type potential which relate to the two wave fronts en-
countered by a point at any time; whereas for subsonic speed
only the retarded type of potential is admissible. (The
advanced-type potential for subsonic or sonic speed does not
satisfy the Sommerfeld radiation condition, which requires
that disturbances be propagated away from their point of
origin.) In the second place, the potential that may be
obtained by analogy with the potential for subsonic speed
must, as subsequently discussed, be rather severely restricted
before it mathematically describes the physical realities of a
disturbance moving at supersonic speed. In the following
development, a desired form of the doublet potential is ar-
rived at by consideration of these restrictions applied to
both a retarded and an advanced type of potential that may
be obtained by analogy with results for subsonic flow.

By analogy with results for subsonic speed (for example,
eq. (A9) of ref. 1) or, more directly, from the discussion of
source potentials in supersonic flow (ref. 15), the sum ¥, of
the retarded and advanced types of potentials required to
form the doublet potential for supersonic speeds may be
written with the doublet situated at the origin as

Mz —fy3—p[322 r /73—yt —g2z2
L2 = Bl )i o (iR T
e m PP

E) =MD o605 (Ma2"— B —B22)
"2z VP—pY—f7

@

where M=V/e, B=+M*—1, and o=0/VB:. The restric-
tions that must be placed on this expression are: (a) only
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real values of the radical term +/z2—pB%®—8?2® are to be con-
sidered and (b) the values of the expression and its deriva-
tives are to be considered zero when z is negative. These
restrictions follow from the physical consideration that
small disturbances propagate at sonic speed and in a super-
sonic stream do not progress forward of their point of origin.

A convenient way of writing the expression for ¥, with
these restrictions accounted for, as previously mentioned, is
to employ a cutoff or unit function as a factor. Thus, if ¥,
represents the restricted value of ¢, the amplitude function
of Yo may be written as

0_2_ e Z) cos (Maz*—B4*—p'2)
v e (@e—By*+2) = (5)

Ule—B-if+29)=1 (>BVF+2)
U—By+2)=0 (z=By+7)

and only positive values of the radical +*+2* are con-
sidered. A method whereby this form of potential can be
determined in & more direct manner is discussed in detail in
reference 16. The discussion in this reference is in connec-
tion with the Green functions associated with the dispersion
of sound waves in an n-dimensional medium in which a
pulsating source exists. When appropriate changes are
made in notation, the expression for y, given in equation (5)
agrees essentially with results for the dispersion of waves in
a three-dimensional space given in equation (55), chapter
XVI of reference 16.

With regard to the unit function U(z), in many applica-
tions where this function is employed it need not be defined
a8 having any particular value when its argument is zero.
In other applications, especially where the unit function is
involved in a Fourier analysis, it must be defined as having a
value of % when its argument is zero. In the present case,
it is conveniently defined, as may be noted in equation (6),
28 having zero value when its argument is zero.

Derivatives of the unit function give rise to an impulse
function called the Dirac delta function. For example,

where

®

bb—a: U(x)=6(x)=0 (z0)

2%; Um—s@=  (2=0)

A useful integral property of this delta function is
b
| 1) 8@) d=100

The next step in the analysis is to make use of the doublet
potential (eq. (5)) to derive the kernel function for supersonic
speed.

DERIVATION AND REDUCTION OF KERNEL FUNCTION

In this section the kernel function is derived and presented.
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The function is given in terms of an improper integral by
equation (13) and in a reduced form with no improper
integrals by equation (15). As it is frequently desirable to
present results in terms of nondimensional length variables,
the results given in equation (15) are presented in this manner
in equation (16).

In order to derive the kernel function, the function ¢ of
equation (3) is considered as the complex amplitude of the
acceleration potential. As such, ¢ is directly proportional to
s perturbation pressure field p=¢'“*p, through the simple
relation

p=—n¥ Q)
and to a velocity potential
p=¢lu'P
through the equation
v 2 gy ®

By differentiation of equation (8) with respect to z andintegra-
tion of the result with respect to z, the vertical velocity asso-
ciated with the acceleration potential ¢ is obtained. Thus,
when y is considered as the potential of a pressure doublet,
equation (8) affords a straightforward means for obtaining
an equation for K (zo,y,), namely:

K(zogo=ms (Eogo,2)ecs )

Details of the procedure are as follows:
The result of the differentiation of equation (8) with respect
to z may be written as

0 09 994 e 51,’5
Oz 0z bz Y

When this equation is considered as an ordinary differential

(10)

equation with dependent varlable 0@ a.nd independent vari-

able z, a complete solution is

faz fu
F_1 T 7 D v
Ege T[T 2r0wae” ax an
where the lower limit of integration is employed in place of
a constant of integration and is chosen so as to satisfy the
condition that ¢ vanish far ahead of the origin A=0. Thus,
from equation (9) there is obtained

e

K(zo,yo)—hm f 35, Po(yo2)e Yan (12

or, after substitution of the expression for ¥ (eq. (5)) into
equation (12), the results may be written as
)

K (:co,yo)=g lim e 7

’o U(\— Br) cos (M"
g, |,

where r=+/y,2+2* and, since the mt-egrand is zero for A<Br,
the lower limit of integration has been changed from — o to

gr.

I’
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It is apparent upon examination of equation (13) that, if
the indicated differentiation under the integral sign is carried
out, the integrand has singular and perhaps troublesome
terms. The indicated differentiation with respect to z,
however, can be replaced by equivalent operations and
followed by integrations by parts that lead to a reduced
form of the kernel function containing no improper integrals.
These steps follow.

Reduced form of kernel function.—As may be diroctly
verified, the indicated differentiation with respect to 2 in
equation (13) is, in the limit z—0, identical with

e lim 2o |:UO‘_“37') cos (MaN—FF)
=0 07 o

_ 1 A cos (M" 1,/%’—,873/07)

z\iﬂn a7 | 2 [ vo—plu)

sin (MR F)— 60— Blyo) sin (MG K=

A—Bly|

W= Byt

Since the coefficients of §(A—B]yo|) in equation (14) vanish
at A=p|yo|, it follows from the integral properties of 5(» —B8|yo|)
that, when equation (14) is substituted into equation (13),
the integrals involving the delta function vanish and equation
(13) becomes:

5Bl cos (MovV—F) | 14)

S S
e [m el (2T

A_Z e~ U (zo—Blyol) sin (Ma~zr—Fyed)+

& ;:oie"aUO\—ﬁIyol)sin(MZv'w./___—a:o’—Blz/o’)d)\] (15)

Equation (15) provides an expression for the kernel func-
tion that involves nmo improper integrals. Except for the
integral, the terms of the expression can be quite easily
evaluated with the aid of trigonometric tables except at
170=0, where the function is singular, and at z=8|y,|, where
the function is indeterminate. The integral is well behaved
and can be accurately evaluated by numerical or approximate
procedures. The singularities and indeterminate values are
isolated and discussed in a later section, but it is desirable
first to express the function K(2y,%,) in terms of nondimen-
sional length variables. As a check on the correctness of
equation (15), the expression for K(z,,y,) is reduced to the
limiting value for M=1 and compared in appendix A with
the corresponding limiting value for the subsonic case.

The kernc¢l fuiction in terms of nondimensional length
variables.—Alth>ugh the preceding results contain dimen-
sional length va-ables, it is usually desirable to have such
results in terms of nondimensional length variables. By



151

employing the variables z, and y, in a new sense to mean that they have been referred to some chosen length I and by
introducing the reduced-frequency parameter k=Ilo/V, the length variables may be made nondimensional. (In flutter
theory the reference length normally is selected as a semichord b.) The variables are used in this sense throughout
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the rest of this report.

_fkxy
2 _ B —
K(xo,yo)=—-m e "““I: il J%Uixgzyflyt’l) cos ( g

i
b s in () dx]

The kernel function (eq. (15)) can be written in terms of these mondimensional variables as

>—l——e  Ulzo—tlye) sin (3 Var=w )+

(168)
An equivalent expression for K(ryy,) which will be useful in subsequent considerations is
9 M,
K(xo,y0)=—m{3 " (ot | Vsl sin(Soa—s%e ) [+
k 2 ot M
—i P .
e o il © P2 T(—Blyol) sin (vaz‘ﬁ’%z) dk} (16b)

Another equivalent expression for K (x,y,) that is more concise and, for many purposes, more attractive than equation (16a) is

2
K(Ioly0)= T Y77%,,.8 Vi,

The reduction of equation (16a) to (16¢) is given in appen-
dix A. One noteworthy feature of equation (16¢) is that the
integral which remains to be evaluated has the same form as
the integral occurring in the expression for the kernel func-
tion for subsonic speeds as presented in appendix D of
reference 1.

ISOLATION AND DISCUSSION OF SINGULARITIES OF KERNEL FUNCTION

As previously mentioned and as may be noted in equations
(18) and (16a), the kernel function becomes singular at
17o=0 and is of an indeterminate nature when 2z=8ly,|. It
is therefore desirable to make special treatment of the
function in the neighborhood of these values of 2 and g, in
order to be able to express the function in & form which is
more amenable for calculations. The indeterminate condi-
tion arises from the first term of equation (16a) because of
the manner in which the unit function has been defined for
this analysis. (The denominator of the first term vanishes
at zp=p8yo. The presence of the unit function in the numera-
tor, however, renders this singularity indeterminate.)

In the next few sections the forms of the singularities are
extracted (see eq. (24)) and the aforementioned indeterminate
forms of the kernel function are explicitly determined (see
eq. (20)). A form of the kernel function more suitable for
caleulation purposes, since the troublesome points are
isolated, is presented in equation (26). A manner of inte-
grating the kernel function across its singularities is given
in equation (27). The singularities of the supersonic and
subsonic cases are then compared.

Indeterminate form.—Consideration is first given to the
indeterminate form, and it is convenient for this purpose to
consider the value of K(x,y,) at points on the positive
branch of a hyperbola. (See sketch (b)).

436876—067——11

y e
%0 U (zo—Blyal) Wc S(——w/_—W _l_%klyul fﬂT

To+M+fzq 2—F3y,2 )

e~ *lwglr dr

— (16¢)
ﬁ,—[ (z0=M~zo?=8%,%) I+

o

Sketch (b)
The equation of the hyperbola may be written as

ZTo=¢e cosh 4 }
. 1
Blysl=e sinh 0 n
In these equations e=0 corresponds to 2y=48y,, since elimina-
tion of § gives x?—S2y=
After substitution of these expressions for zy and B|y
into equation (16a), the results may be written as

ikacosha

I:U(ee % 5 cosho cos?—l-

2 2 —1kq cosh ¢
(o= s

tke cosh 6

1 _
MU(&e e A

J (ecosms _iB
M) ins © 82J (\—esinh §) sin —\/ﬂg M—ésinh? )dk:l

(18)

To obtain & limiting value of this equation for small values
of ¢, the trigonometric and exponential terms can be replaced
by terms up to the second power of e in a series expansion.
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If the result of performing this expansion is denoted by
K’, the equation

, 2 2,—1ke coshB o Sh /] k
K(e,O) ﬁe 8)<ezc§1nh30 ;’e
F2coshd &2 cosh 6+1
;ﬁ‘ 25 1% “gh g (19

is obtained, which, in terms of the original coordinates
%o and ¥, is

2 2k

Vlz U(xo ﬁlyol) [_‘/_ E 2 B

o TtV —Byo’ |
Ii*log Blyol @0)

Although these equations were obtained m order to reveal
the form of the indeterminate value of the kernel function,
they are found to contain singularities at 7,=0. Prior to
any further discussion. of this result, it is desirable to consider
the limiting form of K(x,y,) as ¥, approaches zero, to
determine all the singularities at y,=0.

Singularities at yo=0.—For the purpose of obtaining a
limiting value of the kernel function for vanishingly small
values of 7, the integral appearing in equation (16a) may
be written as the sum of two integrals, namely:

K (20, y0)=—

fm i o U—Blyol) sm( w’i’—ﬁiyo“’)d}\
o * 0Bl sin (2CEAN=FYF ) dn—

In & F o—slgo) sin M) e e

. _ 2e
%ﬂ K(20,y0) Vity

REPORT 1257—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

The first of these integrals may be evaluated from the table
of Laplace transforms of reference 17 and has the following
value:

#
Jig * OO Bl sin (S5 VR—B ) =Dl Kl
(22)
where K is the modified Bessel funetion of the second kind,
of first order. In the second integral, the integrand may

be replaced by terms up to the second power of , in o series

expansion. Thus, ,

N P D0pl sin (2 )

[/
o — . 2
zf e 7 UM\—Blyd) (sm ﬂgf)‘ ﬂdg’" cos Aﬁ)‘ dx

=U(zo—Blyol) {—e "’ (M cos —g— +7, smM?wo +
M o (2

i 81 (g )i si (D%):'} (23)

where Ci and Si denote the cosine integral funetion and sine
integral function, respectively, which are defined as follows:

Si (@)=F— f sint g

cost

Ci(@)=—| —dt

z

Substituting equations (22) and (23) into equation (16a)
gives, as g limiting value of K (2o,%),

e { o)~ | 0 (e )i (52 )i 8 (g )~ 8 () | Dol

=§£JI_,:"U(xo—,s|yo|){y%+k2<w—%)+kz1 ol _ [c (M +1)+01(T>+z sl(M +1> zsl(M 1)]}

(24)

where the following series expression for K;(2) (see ref. 18) is employed:

B @=(Hog ) (Gt - -

where v is Buler’s constant (v=0.5772157).

same as those which appear in equation (20), namely—ze;

>+' (z Zﬂiz;z ) (26)

Examination of equation (24) shows that the only singular terms are the
12z,
and —ke~*0 log|yy-

Thus, for the purpose of isolating the

smgula.ntles of the kernel function, only K’(2,70), as defined in equation (20), need be considered. Nevertheless, the results
given in equation (24) may be useful in some applications since they provide a ready means for evaluating the nonsingular
part of 1:_1.1.} K (z0,50)-

¥
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Form of kernel function suitable for calculations.—As in the subsonic case, with knowledge of the critical values of
the kernel function, an expression can be written in which the kernel function is separated into two parts, one of which
contains no singularities or indeterminate values and the other of which contains all the singularities and critical values

of the kernel function. This expression is

K{(zo,y0) = [K(x0,0)— K’ (0,y0)] 4K’ (o,0) (26)

where K (20,)0) is defined in equations (15) or (16), and K’ (2o,%0) is defined in equation (20).

The term K (xo,%0) — K’ (20,30

in equation (26) has no singular or indeterminate values. The term K’(zy,y0) is singular at =0 and indeterminate when

=BYo. -

Integration of singularities of kernel function.—Since integration of the kernel function is often necessary, a few remarks

on how to circumvent its inherent singularities are in order.

indefinite integral with respect to the variable n=y—y,.

Each term of K’(2,y0) in equation (20) possesses a simple
In performing integrations with respect to 7 that involve a

passage across the line n=y, a principal value is to be taken. For example,

3@ U (2o—Blyol)zo dn
—1 (y—n)*z?—B* (y—1)?

where the symbol f indicates that the singular integral is to

be considered simply as a function of its limits. A justifica-
tion for this consideration is that it leads to results that
could, with considerable labor, be rigorously established by
maintaining the variable z in the analysis until all operations
are performed.

Comparison with singularities of subsonic case.—It may
be of interest to compare the above results with correspond-
ing results for the subsonic case, that is, for 2, >0 and
7#0=0. Results for the subsonic case may be obtained
from equation (31) of reference 1 as follows:

Ve (1 —M?)yo* -0
Yoz A -yt |

ik B oM F0—Mys
VAt A=y 20—M) o+ A—MHye

j log klvzd+ (1 — M)y, -’lio]}
2 2(0—M)
e lc(l-l-ﬂéf)yo
=77 [t e a2 e ] 9
The singular terms of this expression for z,_>0 and M<1 are

Vlz e~ <y2+ 10g|y0|>

Comparison of this result with equation (20) shows that the
singularities for subsonic and supersonic flow are of identical
form,

. . 1
i K o=l e

—-ﬂ:

SOME INFINITE-SERIES EXPANSIONS PERTINENT TO THE KERNEL
FUNCTION

The kernel function cen be expressed as a series by various
expansion procedures. Some particular expansions, which
should be useful in applications, are discussed in succesding
paragraphs. These are the power-series expansion in terms

_1 | U@o—Bly—1)ve’—F (y—17 U (zo—Bly+1])va'—F y+1)*
RS e At

y—1

y+1

of the reduced-frequency parameter (see eq. (29)) and an
expansion in terms of Bessel functions. The latter expan-
sion is used in a later section to obtain the kernel function
for two-dimensional flow from that for three-dimensional
flow.

Power-series expansion with respect to k.—As in the case
of subsonic flow, the kernel function can be expanded into
& power series with respect to % that, in the present case,
is useful for small values of k/8% & combination of reduced
frequency and Mach number that is inherent in such an
expansion of the supersonic kernel. The terms of the expan-
sion may be simply obtained by expanding the terms of
equation (16a) that are functions of % and collecting the
results. The first few terms are

__ 2™ itk By
K(zo; ’.l/o)— Vlzyos U(Q?o Bly‘)l) I:\/xo’—ﬁ’"yoz Bg? ‘\/302_62?/02

3 () (i o o™ )

(e e, 4] o

Although this power-series expansion converges to the
appropriate value of K(zo,50) for all finite values of &/g? a
great number of terms are required unless %/8® is small.
These first few terms of the expansion can be considered to
represent the kernel function for values of k in the range of
magnitudes generally encountered in dynamic-stability
studies and, therefore, they are pertinent for obtaining
time-dependent stability derivatives. A noteworthy feature
of the expansion is that each term can be integrated, in the
sense that it contains a simple indefinite integral, with re-
spect to the variable n=y—y,. When such integrations
involve a passage across the line y=v, a principal value is
to be taken in the sense described after equation (28).
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Expansions in terms of Bessel functions.—The ftrigono-
metric terms appearing in the expression for K(zeyo) in
equations (15), (16a), and (16b) can be expanded into infi-
nite series involving Bessel functions of the first kind. Such
expansions have good convergence properties, even for large
values of the parameter k/8?, and each term possesses a
simple indefinite integral with respect to ». Such Bessel
function series are therefore useful for deriving an expansion
for the indefinite integral of K(zoy,) with respect to 7.
The indefinite integral of K(zo,y0) leads to the downwash
associated with pulsating vortex lines (‘“horseshoe’ vortices)
and, as previously indicated, to the kernel function for two-
dimensional flow. It might be useful to point out that the
expansion of the cosine term into a series involving Bessel
functions is also useful for studying distributions of pulsating
gources.

For the purpose of expanding the trigonometric terms
under discussion, consider the expressions

U 0—a) cos b/Ai—a?

o (30)

and

U0 sim (b F= =5 | UO—0) 2 “_a"“”] (31)

where @, b, and N are positive.
By making use of a known Fourier transform relation,

expression (30) can be equated to an infinite integral involv-
ing a Bessel function of the first kind (see, for example,
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By use of the addition formula for Bessel functions (see.
for example, p. 358 of ref. 18), the Bessel function appearing
in this equation can be written as an infinite sum of products
of Bessel functions as follows:

Jo AT = Jo( ) Jo(BN) -2 g‘_‘{ (—1)*Jan( N Tan(BN) (33)
Thus,

2 3 cos (b-\lx —a )
f Jo AT ) cos ardr=UA—a) —2_%7 o

- ﬁ ) [Jo(fx)Jo(bx)+
2 31 as(rNTan(ON) o030 d
(34)
In view of the relation (see ref. 17, p. 37)
® U(A\—a) cos (2n sin—! %)
J; Jan(™N) cOs ardr= e (35

the indicated integration on the right-hand side of equation
(34) can be carried out term by term so that

U(\—a) cos (b/A7—a?)

P. 33 of ref. 17): IN¥—a?
® cos (byN—a2 UO‘— a) " —1
[77 50 O cos ar dr 00 V=) o N | JON+2 25 (1) cos (20 sin (36)
’ VNe (32)
® ZFH _ Substituting the expression on the right-hand side of equation
J; Jo (M) cos ardr=0 (<9 (86) into equation (31) gives
NT(A\—
U(\—a) sin (b/V—g) = ( ){ T(EN—33 (1) [Jz._l(b)\) J,,,.H(b)\)] cos <2n sin~! )}
N
M {cos (sm‘l E (—1)* ' Jonr(BN) cos [(2n—1) sin“-):]} (37)
But, since
A
U—a) \/)\’—_—_a’ cos (Sin"l %)EU()\—a) (@a=0)
the expression for I/(A—a) sin (5/A*—a®) may be written as
U0—a) sin (byF—) =200—a) 33 (—1)"*Jea-1(8¥) cos | (2n—1) sin=* & (38)

By direct comparison, equations (36) and (38) can be used to write expanded forms of the trigonometric terms appearing

in equations (15), (16a), and (16b).
dimensional supersonic flow.

Expansions thus obtained will now be used to derive the kernel function for two-
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In contrast to three-dimensional flow, a physical interpretation of the kernel function for two-dimensional flow is that
it represents the downwash at a given field point due to & pulsating bound vortex line of infinite length. This kernel
function may be obtained by integrating the kernel function for three-dimensional flow from— « to « or, in view of the role
of the unit function, from one Mach line to the other, with respect to the variable n=y—y,. Pulsating ‘horseshoe”
vortices may be obtained by integrating K (zo,0) over an arbitrarily finite range with respect to 3.

DERIVATION OF KERNEL FUNCTION FOR TWQ-DIMENSIONAL FLOW

In this section the kernel function for three-dimensional flow is reduced to the function for two-dimensional flow, and the
final results of the reduction are given in equation (49). For the purpose of derivation, K(zo,y0) will be considered as given
in equation (16b). The two-dimensional kernel function can then be expressed as

lM?h:o

| K@ydn=——g; M V=) |+

11% ¢~ ﬁ Z % L :ol ¢ B U(x—élyol) sin (Z%k m) d)‘}

—K (o) (39)
or
Kay=—r; (e — Lge *‘“oI,) (40)
where
=X (i °“";7),M> I:U(xo—ﬁly—nl) sin (X Ve=FG—7 ) | dn (412)
or
L= (i )3€’° Mm (M’J— 7) dn (41b)
and
n=p 2 L[ =P v0tah sin (Lo | )

In equations (41) for I; and equation (42) for I;, infinite | By direct comparison with equation (36), equation (43) may
limits with respect to the integration of 1 are not necessary. | be written in expanded form as
In view of the role of the unit function in the integrands,

limits of =2, include all values of 5 for which the integrands —28 (a 2) f—“u U(fco—l 7)) [ Jo< k o )

are different from zero. The symbol * indicates that the % P B

integrals are to be considered simply as functions of their 2SN (1), (ﬂik > o (2 - 1) d m
limits or that the singularity at =0 is to be ignored. E (=17 g Tojcos\Fmam g ) |on (44)

First consider equations (41) for I; and then perform an ) . . . .
integration by parts. The expression for I; may then be | In this equation, the terms involving i, do not contribute

written as to the integral because
ILi=8 M E)a:o+M> l:-——- U (zo—|n]) sin ( w/Tn> I on %D cos <2n sun‘1 7Y dy
f‘;i"’ " T cos (T ) i = L [t sin (e 2) [

26 (535 f ¥ U(%_I”D cos (V) dn(43) |7y sta—lab sin (2nsint 2) dn | =0



156

Hence, since

w0 Uo—11D) , 7700 11 i1 1

J:‘] ]%[ 8(xo—|7|) sin™? fﬂ d17=;3—r U(2)

the expression for I, can be written as

Le—np (%}4% Uleo) Jo (%7‘ $Co>
——np |00+ U o (Y o0) — £ U s (T )|
(45)

Now consider equation (42) for I;, namely

o 35 F 0t (B )]

The double integral in this expression can be considered as a
surface integral over a triangular region of the Aq-plane cut
out by the lines p=)\, 3=—7, and A=, as shown in
sketch (c).

| (orn)

A= x5

~~ {0 ~%)

Skptoh (o)

By 2 change in the order of integration, which is admissible
since the singularity at n=0 is to be ignored, the expression
for I3 may be written as

;I _
L=p L o 5’d>\£kgo‘ﬂ,—l’7l) sin(%kﬁ—n’ dn (46)

The inner integral in this equation is identical in form to the
integral in equation (41). Hence, by observation of and
comparison with the results obtained for I; in equations (43),
(44), and (45), it is found that

N J(\—
£ ZOlD i (L2 o= ) ar=—2E 000 (E) (e
The expression for I3 can therefore be written
ik\
_TME (% M
=" U()\)Jo(—ﬁ, x)dk 48)
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Substituting this result and the results given in equation
(45) for I; into equation (40) gives a desired form of the
kernel function for two-dimensional supersonic flow:

K(%)—zwﬁ [5(950)+—U($0)J0< 57 :co)—
%U(%)Jl 'ﬁ_zxﬂ>]+
) B 00, %x)a} (49)

Examination of equation (49) shows that the only singularity
involved in the kernel function for two-dimensional super-
gonic flow is the é-function. At zero frequency, all the
terms of K(xy) except the s-function vanish. The kernel
function required to treat two-dimensional wings at steady
angle-of-attack conditions is therefore proportional to this
3-function, and, as shown in the following section, leads in
a very simple manner to the well-known Ackeret results.
The integral that remains to be evaluated in equation
(49) is well behaved and similar to integrals, treated by
Schwarz (ref. 19) and others, that arise in the velocity-
potential approach for treating two-dimensional wings.

" APPLICATION OF KERNEL FUNCTION TO LIFT DISTRIBUTIONS FOR TWO-

DIMENSIONAL WINGS

The results obtained in the previous section for the two-
dimensional kernel function are now employed to obtain the
lift distribution on oscillating and steady two-dimensional
wings moving at supersonic speed. (See egs. (56) and (61).)
Since the lift distributions so obtained agree with the Ackeret
results for a steady wing and also with known results for the
oscillating wing (ref. 15), they serve as a check on the correct-
ness of the expressions for both the two-dimensional and
three-dimensional kernel functions.

The integral equation that must be solved to obtain the
lift distribution for two-dimensional wings in supersonic
flow is particularly simple since it involves a single integral
of the convolution type:

Be=g [ IoFet= [T Lore—pe 60

Integral equations of this type can be readily solved by
Laplace transform procedures since the Laplace transform
of a convolution integral is the product of the transforms
of the functions that compose the integrand. In the present
case, if 8 represents the Laplace transform operator defined
by

L{f@)= f " e fle)dz=f(e) (51)

the transform of equation (50) may be written as
T)=—
B()=g p L(s) K (s) (62)

Solving this equation for L(s) gives the Laplace transform
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of the lift_distribution:

Lo=42 23 (53)

Inversion of the transform on the right-hand side of this
equation gives the lift distribution.
For the case of a steady two-dimensional wing,

W(r)=Ve -15(8)=%‘
E@=2 5 (2 K(=25F
Then
L(=2r (50)

Bs
The inverse transform of equation (54) gives for the lift
distribution:

L(a:)—ZPV a

U(2) (55)

From this result, the total lift per unit of span is

Chord

] fo t La)de 2pV2a2<0hord (56)

This result agrees with the well-known Ackeret result.
Now consider the unsteady case for oscillatory translation,

W(a)=10lh=1VEkk (87)

where % is the amplitude of displacement referred to I, and
the Laplace transform of w(x) is

szh

w(8)= (58)
The Laplace transforms of the different terms of X(z)
(eq. (49)) can be simply derived or they may be obtained
from Laplace transform tables (for example, ref. 16). After
combining the transforms of the different terms, the results
can be written as

K= V(o ?f? oo (59)

Substituting equations (58) and (59) into equation (53) gives
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for the transform of the lift distribution
) 2’ipV Lh s+ik
’ \/( LY’ ka (60)
P Rt

The inverse of this transform gives for the lift distribution

9 _iarlee

L=2eT [U(z)e () +
= iardeg

it [T 50 (2 dz] (61)

This result can easily be shown to check with the results of

reference 15. Moreover, if ikh is set equal to @, and then %
is allowed to approach zero, equation (61) reduces to the
result for the steady case.

CONCLUDING REMARKS

The main purpose of this report was to derive and present
in & form that could be numerically evaluated the kernel
function of the integral equation relating downwash and lift
distributions for oscillating wings in supersonic flow. This
purpose has been achieved for three-dimensional flow, and
the results have been converted to a form more suitable for
calculation by isolating the singular or critical points. The
kernel function for two-dimensional supersonic flow has been
presented and the results show that the only singularity is a
Dirac delta funetion, which appeared in such a manner that
further reduction with regard to singularities is not required.

The results presented in this report for supersonic flow
together with those previously obtained for subsonic flow
provide & kernel function that is capable of being evaluated
at any Mach number. As experience develops it is expected
that use can be made of the kernel function to develop
approximate procedures, that will be more or less uniform
throughout the Mach number range, for calculating aero-
dynamic forces on oscillating (or steady) wings of arbitrary
plan form and with arbitrary downwash conditions. The
labor involved in such approximate or numerical procedures
will indeed be prodigious and will require the use of modern
high-speed computing equipment.

LANGLEY ABRONAUTICAL LLABORATORY,
Narronar Apvisory COMAITTEE FOR AERONAUTICS,
Lanerey Fiewp, VA., February 16, 1966.
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APPENDIX A

DERIVATION OF EQUATION (16¢) AND REDUCTION OF THE KERNEL FUNCTION TO THE SONIC CASE

The purpose of this appendix is first to reduce equation
(16a) to equation (16c) and then to reduce equation (16¢)
to the sonic case. The reduction to the sonic case, by com-
parison with results obtained from consideration of subsonic
speeds for the sonic case in reference 1, provides a partial
check on the correctness of results ¢btained for the supersonic

case.
DERIVATION OF EQUATION (I6¢c)

In order to reduce equation (162) to equation (16¢) con-

sider the integral
2 [ % vo—plud sin (YA

.k f L
2M BJva]

M
DOl (o5 I e8I )y

gy (=T (A1)
where
- LM T O—lyel)e #0257 g (A2)
and
L= fp I ! TO—Blyohe mOHATFD o (az)

In these expressions M takes on only positive vé.lues, that is,
B lyo] SN=<z0. Hence, consider for each integral the single-
valued substitution

A=yl (+ M1+ 7—7)
which, for A{=1, leads énly to positive values of A.

(Ad)

Solving this expression for r gives

)\:I:M\/X
B’lyol

Thus, if the substitution

(—MN—Fy)=p"|yol

is made in 1; and the substitution

OHMIN—Fyd) =Pyl

(A5)

(A6)

(47)

ik

B0 0=—pgims ¢ = U(zo—Bly

= ﬁ’y’ms(f”

1 2
Vg )+l (PR ey,

is made in [z, there is obtained

I1—|?lo| m(:o_M o ﬁ) + g""‘l'o|’(l-r
Vi+tr
(A8)
and
L=y ”_ﬂ e (=) () etivran”
3 T
1
v fﬂ_zlﬂ_ol (zo—My/zg1—B552 ) ) ( 1) e~ vl g, +
1 B +147%
ﬂ—,m (o +Mz3—F%,7)

[l Bl [

—1 —lk]y |rd
T(’o-M o3 -At? <'1+T )e o

(A9)
Combining these results gives for TI;M (L—Io)
2‘_'5—4 (I1—12)=
Myl A oA il
—1 Je~lblrdr
] Gom M= VH'T
(A10)
or since

5,|le (zo+ M7 =B,%)
1
il (zo—My/7,3=F5,3)

e~ Hnlrdr=—

sin (25 VaT—F7 )

(A11)
lk
k7 o Ey——lyiD ety 7 sin (A VT )+

1
E (5 (ro+Myz3—F75,3)

T gty

21 J 1
g o MRT0?) 147

Substituting this result into equation (16a) gives equation
(16¢) or

(A12)

(16c)
i Comaer) V1T
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REDUCTION OF EQUATION (16c) TO THE SONIC CASE

In order to reduce this result to the sonic case it is first necessary to discard terms arising from the advanced-type
potentials employed in deliving the doublet potentials for supersonic flow. This may be accomplished by replacing

\/zo —B%y,?
cos 1/ ?—B%,’ ) with = eﬂ’ ", The limiting form of K (xo,30) 288 M—>1 can then be written as
Ko=) | =2y e ® T i | s L etirdr | (A13)
To,Yohar=1= ——z 36 0 U(ZTo—BY|) | —/—— +ik|yo e N lT dT
A— vl - 2 1’2

' v o B"‘yo 5’[7 | (Io M\/Tlo) 1+

When the limit M=1 is approached from the supersonic side, the term M is conveniently replaced by
M=1—|—:]é €
where ¢ is infinitesimally small, so that
=M +1)=5 (24} ) = (A19)

With this approximation equation (A13) can be written as

—1ks, ——if[zo—(l-l-f)m] q%l[zo-l-(l-i-g)m]
Klenohe- l=1¢i—1’l‘; —Zl—%’ Ulzo—+elyo) on:i eyo’ ? ’ +iklyl 1 ] v 1:_1_2- e~y |t dr

Tl (s43) =

P )] g L O E)

— kol dr (A15)
B[ () ()] T

or

=il dr (A16)

e~ 15, % ( T
K(zo0/0)ar-1= —Ulz_yoz Uzg)< e o +'Lk |?/°lf ( 2) 1/1']‘_72
2|70|

In order to show that this result is equivalent to that given for the sonic case in reference 1, it is convenient to first
express the integral term as the difference of two integrals

(2

Vo) )

'Lklyolf )W e— [l df—'zklyo[f 1/_ e~ H¥lr d‘f_@k|?/0|j 1;7} e~ Tl dr (A17)
215'0

The first integral on the right of equation (A17) can be evaluated by comparison with the following results:

sin ar dr

-
r
dr= ———=cos ar dr

® T —1iar —a ® T
ﬁ = o Y11 Yo Jitat
_0 sin ar cosar .
_b“<f yi4-7? W=l f 1/1+-r’d )
=55 3 o)~ Lu@1H-iEle) |

=3 L@ —Li@)]—-1—iK @) (A18)

435876—07——12
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where Iy, I, Ky, K; are modified Bessel functions and Iy and I, are modified Struve functions (see ref. 18, p. 172 and p.

332 for reductions of similar integrals). Thus

i#lgl [ e dr =y B -+ T Lo~ ety — il (19
In the second integral on the right of equation (A17) make the substitution
_ 1 (v )
T 2yl (k A
or
A=fel TF =)
This gives for the second integral
e (TR e e e\ BGED)
i I:z/olf0 ﬁe =1, & B )e
it to? i* vo?
=e5<)‘-% K —ik 0 o2 (k-_;_)d)\
o] %ol
i vo? ik vp?
=e2 *—:o)—1—ik T (“7)@\ (A20)

[¥ol

Substituting this result and that given in equation (A19) for the integral in equation (A16) gives

- T _723_ > Zg & _%_i
K eotoheeim s U 262 75 |ttty + i ety 2 1o Bl J. ”ez(* »)dx} (A21)

A comparison of this result with the result given in equation (47a) of reference 1 shows that the two equations are

equivalent.

APPENDIX B
DERIVATION OF DOWNWASH FUNCTIONS ASSOCIATED WITH “HORSESHOE” VORTICES IN SUPERSONIC FLOW

The downwash associated with a vortex line can be
obtained by an integration, between appropriate limits, of
the kernel function K(zo,30) with respect to y=y—y,. In
order to perform such an integration analytically, recourse
must be had to term-by-term integrations of an expanded
form of K(zy,%). In this regard, use can be made of the
expansions given in equations (36) and (38) of the analysis to
obtain expanded forms of the downwash functions for vortex
lines that have very good convergence properties, especially
for the range of values of the parameter A%/8* that would
usually be of interest in applications. Xxpressions so ob-
tained will be cumbersome and will require high-speed
computing equipment to make them very useful.

In regard to “horseshoe” vortices in supersonic flow, there
are five different significant regions in which a field point
may be considered to be located (see sketch (d)).

Region (1) is between the Mach cones emanating from the -

end points of the bound-vortex line. The downwash at a
point in this region is not affected by the trailing vortices but
is created by the bound vortex alone. Therefore, the down-
wash is the same as would be produced by a bound vortex of
infinite length and corresponds to the kernel function for
two-dimensional flow discussed in the analysis. Region (2)
i8 between the trailing-vortex lines and is within the Mach
cone emanating from one end of the bound vortex but outside
the Mach cone emanating from the other end. The down-
wash at a point in this region is created by the bound vortex
and one of the trailing-vortex lines. The other trailing

e
- (4) -
P v
_ 7
_ -
v //
e Trailing vortex d (5)
\\\ ///'
\\\ (2) ///
~ 7
5 ~ -~ Wind direcli
k] < - i ireclion
3 (n :>< (3)
e ~,
va ~
i A
Ve ~,
e @) ™~
e \\
// ~
7 \\
\\\ Trailing vortex \\\\ (5)
N ~
\\ \\
@ o
N ~
N ~N
\\
~
~
~
~N
Sketeh (d)

vortex has no effect on the downwash. Region (3) is be-
tween the trailing-vortex lines and is within the Mach cones
emanating from both ends of the bound vortex. Downwash
in this region is created by the bound vortex and both trail-
ing-vortex lines. Region (4) is outside the trailing-vortex
lines and is within the Mach cone emanating from one end of
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the bound vortex. The downwash is created by the bound vortex and only one of the trailing-vortex lines. Region (5) is
outside the trailing-vortex line but within the Mach cones emanating from both ends of the bound vortex. The downwash
is created by the bound vortex and both trailing-vortex lines.
For any of the five regions discussed in the preceding paragraph, the integral corresponding to the downwash function
mey be formally written, with use of equation(16b), as
8 0,1

L ’:’K(xo,?lo)dn=-—%|:e 105 ﬁ?ﬂﬁzzci_ﬂU(%—mw)m( 4—_ﬁ> it
g P U0 gy sin Mt o)
o

_@(eﬂ;ﬂprk ) an
Vi Tt
where use of the substitution Sy,=¢ gives
B o 2.4 1
I—-f”wv@o—ﬂlmb sin (SN ) dn
AG=n) L S NU@—Blyl) ;) (ME g
) < ba:o M) 8 ( $ )dg‘ (B2)
and o
_ ﬁ(ﬂ—’u)l % @ _ . ﬂi'k - ]
f= i@—m s“"[flrle Ui—lt) sin g =g )an [ (®B3)

In equations (B2) and (B3), a principal part—as described after equation (27) in the analysis—is to be taken when the
integrations are carried across the line {=0. The purpose now is to reduce these expressions to forms amenable to
numerical eveluation. The first step in this procedure is & reduction of the expression for I; (eq. (B3)). The double
integral in this expression can be considered as a surface integral in the A{-plane where the order of integration is first with
respect to N and then with respect to . The steps in the reduction are first to delineate the area of integration for each of
the five different cases under consideration, and then to change the order of integration in the surface-integral represent-
ation of I,.

From the description of the different cases to be considered and by examination of the limits of integration in equations
(B1), (B2), and (B3), the area of integration for the case of a field point in each of the aforementioned regions may be
considered as shown by the hatched areas in the following sketches:

- )\ e “L
/’/—B()’"‘f]')= Lz £ I)‘ L , qy"’l,) 2

i’ ’,—)\‘X \ —/-)‘-x \‘ /__-—Xlx
//// PRt o o o S o
7 A > A 2

~~d. \\\\ \B(J/“'Ia)‘ ; 1
=% \B(}""lz) =-§l E,"X B(}"ng)=§| t=-

=

o

(3) (4} (5)
Sketch (e)
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Expressions for 7, for the five different regions or cases may then be expressed as simple integrals as follows:

Case (1):

m
=77 Fo,—van (B4)
Case (2):
i _m
= fo Do Fo,—Nd + f:"e 8 F(\— ) d\ _ (Bs)
Case (3):
i , i
I— ﬁ TR PO, —Nd ﬁ ’ ¢ P F(\,— )M ff'e & Flgs,— 1) d\ (B6)
Case (4):
., B
L= [ 7 Foura (B7)
Case (5):
i ., B
I= [ POt 67 P pad (B8)
The expression
Fo,—N)= 5@ U(‘_“ D gin w/ s (B9)

is evaluated in the text in connection with the derivative of the two-dimensional kernel function and is found to reduce
(see eq. (47)) to

Fo,—N="5 Mk 1709 T M" y (B10)

The F-function for other arguments can be obtained by substituting appropriate limits in an integration by parts of
F(A,—1t1), namely (see the development following eq. (41) in the analysis):

A —
F()\;—'g‘l)=£r U()\g.a k)] sin ﬂpftxk 52_3—2 ds
A A A
=—Lvo—g sin =g 2, (1——“‘"*) ool sin~t 5" —2E 5 (M) [} Eso—lsint £ ar—

g s Jaa ( >‘> [U()\—I ¢]) sin (2n sin

After the first term on the right-hand side of equation (B11) has been expanded by comparison with the expansion
given in equation (38) of the analysis and the limits of integration have been substituted, this expression may be
written as

+f A 8(A\—|¢|) sin <2n sin~? §'> di':l (B11)

m,—§1)=ﬂ%{k UM Jo (le —U0—{n)) { Jo ( n? I—’i—g [2(—;)"-‘ Jan1 (ﬂ%}‘ cos I:(?m-—l) sin~! g-l:l-l-
A, () (o £)]) .

Substitution of ¢; for A in the limits of equation (B11) gives

Foy—t)= _Uo‘—lﬁl){ J 0( sin~t ﬁ"‘E [2(_1)3-1 Jan-1 Mk)‘) cos [(2n—1) sin—13= Ia:|+

n=l Ba

Mk (_l)n Jan ( sin <2n sin~! g")jl} U()\—Ihl){ Jo < )‘> -1 3’1
0 (o A () )
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If —¢; is replaced by {, in the limits of equation (B11), then

F\, )= 5 U(x) Jo (Mk)\
00l { 248 7o (L) sn-s 14
= 2(—1)~— T (M >cos [(Zn_l) sin 81
Mk 1y J,,,( sin <2n sin-1 %ﬂ} —_

Substitution of {; for X and {, for —¢; in equation (B11) gives

F(ts, 1) =—TU(—| ;,1){ 7 (Mh> by

> 2(_1)“_ Jan-1 ( )‘) cos [(2n—1) gin-1 52 3’2 +

nml

0 ]

U(x—ls“ll){?,— 7o (H2) sin-1 &

ne=l

M"(_l)“ Tin (

sin (2n sin~1! %)]} B15)

When equation (B10) and equations (B12) to (B15) are
substituted into equations (B4) to (BS), respectively, they
give the reduced forms of I, for the five cases under considera-
tion.

After the reduction of I, the corresponding reduction of
I, is considered. As may be found by examination of the
expression for I3 (eq. (B2)) and the sketches showing the
areas of integration for the different cases, reductions of
I; corresponding to those of I, can be obtained from the
F-functions (eqs. (B10) to (B15)). Results for the different
cases may be expressed as follows:

Case (1):
Il () PO =N B16)

Case (2):
=lim o z?ﬁ_) FO,—12) (B17)

Case (3):
I=lim (i 5ar) FGato (B18)

Case (4):
I=lim (7 55 37) FO8) B19)

Case (5):
h=lim (72 55+ 7) Fnt (B20)

[2(_1)n_ b P <Mk)‘> cos [(2n—1) sm‘lL & + |

When the expressions for I; (eqs. (B16) to (B20)) and I,
(egs. (B4) to (B8)) that are associated with each particular
case are substituted into equation (B1), expressions for the
downwash at each of the five significant field-point locations
may be obtained in terms of the F-functions (eqs. (B10) to
(B15)) as follows:

Case (1):
" Bangoan=—2 [e

ﬂ% e-‘&oﬁ"’ e P F(x,—mdx:l

kro

(B21)
Case (2):

o
" K(roydin=—20{ ¢ & FO,—i)+
n l )\_.,,- Mkb)\

B i
ﬂ%e‘"“" [ fo e PO,—NdA

i
ff ¢ P F(x,—;l)dx]}

(B22)
Case (3):
f K(ﬂfo,yo)d"l“‘ '—% e (.M?c W F(!’z,—h)-l-
5 _n
1o [ f B PO, —Nd
...
J;l’ e & FQ\—f)dr+
i
f:“ e ® F(rg,—rl)dx]} (B23)
Case (4):

T 2
|7 Kangdr— ——{ " lim (i) P+

] N F(x,a)dx}

(B24)
Case (5):

iM2kr,
J::’ K(xo;yo)dn='—2l—ﬂ{8 e ]Jm ﬂﬂﬂcga“l' )F(i'a, S+

LN
Fpet [ [2e poysaant

il
f:‘e 7 F(t, mdx]}

The results for case (1) (eq. (B21)) agree with results obtained
for the two-dimensional kernel function given in equation
(49) of the analysis.

(B25)
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